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ABSTRACT

A problem of qasification and beating of a solid due to the action of an

external energy source is discussed. The problem involves a moving boundary

when the solid gasifies. At parts of the boundary where gasification is

taking place, a model problem looks very much like the one-phase Stefan

problem with an energy source at the moving boundary. However, any gas

produced is assumed to blow away immediately, and there is no conduction to

the solid from the outside, even when the surface temperature of the solid is

below tne gasification temperature. Accordingly, if the temperature is

extended to a function defined over all space by setting it equal to the

gasification temperature outside, the temperature will not necessarily be

continuous at the boundary, and instead a Neumann condition may be satisfied

there. Also, no resolidification is possible, so that the region occupied by

the solid cannot increase. Thus, one has the possibility of a situation in

which the boundary may alternately move and be stationary. A generalized

formulation of the problem is given, a numerical algorithm is described, and

computational results are presented.
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Key Words: Free boundary problem, Neumann conditions, Gasification,
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SIGNIFICANCE AND EXPLANATION

The classical Stefan problem models the evolution of the ice-water

interface in a melting process as it moves under the influence of heat

conduction in the two phases. The gasification problem arises when one

irradiates a solid and vaporizes a portion of it, with the gas blowing away.

The gasification problem diffcrs from the Stefan problem in that the front can

move in only one direction, and the gas cannot resolidify.

In contrast to the case with the Stefan problem, in the gasification

problem the solid boundary can stop moving and start cooling down. In that

case the nature of the boundary conditions to be satisfied changes. A key

goal of this paper is to devise an algorithm which will automatically solve

one or the other type of boundary value problem as it becomes the relevant

one.

The paper presents an algorithm which solves a variety of boundary value

problems without explicitly locating the boundaries in question. Also

included is a me-ns of treating the deposition of enerqv on a surface without

location of the surface. Numerical results are obtained and compared with the

qualitative properties of solutions previously anticipated. Acccrzion For
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NUMERICAL SOLUTION OF A GASIFICATION PROBLEM

Joel C. W. Rogers

1. Introduction

The problem we consider is of the following sort: A solid material is

exposed to an external source of heat. Heat is conducted internally through

the solid, and when the solid reaches a critical temperature, it gasifies.

The gas thus formed blows away and no longer interacts with the solid. In the

version of the problem given here, the external heat source is radiant energy,

to which the solid is opaque and to which the medium external to the solid is

transparent. However, other types of heat sources may be treated as well; in

particular, heat sources of a frictional nature at the surface of the solid

may be considered, in which case the problem is better known as an "ablation"

problem.

In the next section we will proceed with a careful description of the

phenomena we expect to find associated with the gasification process, and in

particular we will analyze the ways in which this problem resembles and

differs from the classical Stefan problem. On the basis of this analysis, we

will begin development of a mathematical model. A third section will discuss

more specifically a time-discretized version of the model, the treatment of

boundary conditions, etc. Following this, there will be a brief description

of a numerical quadrature of the model, as well as computational results for a

particular problem whose initial and boundary data will have been chosen so as

to hrinq about a olution exhihiting the phenomena which are antici-[ted in

the second section. A final section addresses the question of the nature of

oonqn-,!r hv the ,nit-ed States Army under Contract No. AA2n--T41.



the dependence of solutions of the time-discretized problem on the initial and

boundary data. We show that this dependence is not generally monotone in

character. Various weakened types of monotonicity which may 'iold are only

conjectured.

we should make it clear that we have not answered the critical question

of convergence of the algorithm presented here, nor the questions regaiding

stability and regularity for the approximate solutions generated by the

algorithm. However, we would not have presented this paper unless, bolstered

by confidence in the essential correctness of our analysis of the salient

features of the gasification problem and the numerical results that we had

obtained, we felt that the convergence of the algorithm to a solution of the

problem could be proved.

With regard to the mathematical theory of solutions of nonlinear

parabolic equations, we place the importance of this problem in the following

context. The theory of the classical Stefan problem we consider to be in

fairly good shape, in respect both to the basic questions of existence and

uniqueness of solutions and of effective computational methods for solution.

For systems of degenerate parabolic equations in several space variables, the

situation is more complicated: The proofs of monotonicity and stability for

solutions of the Stefan problem do not go over to the general case of systems,

and indeed for some systems modeling phase transitions with solute diffusion,

the experimental evidence and some linear perturbation theories point to a

high degree of instability and complexity for the boundaries between different

phases [71. The difficulties irisinq in the treatment of parabolic qvstems in

several space variables are in some resnects similar to those encountered in

the stiv of hyperbY1ic s'v ..ers in several space variables [;1. The

gasification problem belonis to what -nav e the simplest type of nontrivial
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svstem. There are two lependent variables, the enthalpy u and a quantity

X representing the fraction of material gasified at each point, but in fact

in many cases X is an explicit algebraic function of u, in which case the

problem can be put in Stefan-like form. Depaitures from this condition are

characterized by the fact that X is constant in time. Accordingly, an

analysis of the mathematical changes wrought by enlargement of the Stefan

problem to the gasification problem may be very informative with respect to

the phenomena to be expected when one deals with more general parabolic

systems.

From the point of view of numerical analysis, there are twc aspects of

our treatment which may be of interest. The first is the means qe use to

deposit radiant energy on a moving, generally irregular, surface (the gas-

solid interface) without explicitly tracking the surface. The second feature

is that, in certain regimes of the initial and boundary data, the problem

looks like a parabolic problem with fixed boundary and Neumann boundary data.

In that regime our algorithm will solve the problem without explicitly

locating the boundary. This is to be compared with limiting regimes in which

the classical Stefan problem reduces to a parabolic problem with fixed

boundary and Dirichlet data. Certain algorithms which have been given for the

Stefan problem will soLve this prohl-n without explicitly locatinq the

boundary [2, 1, 41.

- 3-
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2. Governing Assumptions

Typically in the gasification problem, we will assume that the heat

conduction in the interior of the solid may be described by the equation

ut = Af(u) , (2.1)

where we may think of u as the "enthalpy" per unit volume and f(u) as the

"temperature". f(u) will be a nondecreasing Lipschitz-continuous function

of u. We shall assume that the solid material will only gasify upon reaching

a critical gasification temperature, which we may take equal to 0. Thus,

(2.1) will hold in the region where the temperature is below this number, that

is, is negative.

Suppose the energy transferred to the solid by the external energy source

is F times a Dirac measure on the surface. When the temperature of the

solid material at the surface remains below the gasification temperature,

energy conservation at the solid boundary is expressed as

-- (f(u)) = F , (2.2)
an

where n is the unit outward normal of the surface. In this case the

boundary is not changing, since no gasification is taking place. The

mathematical statement of this is that

V *n0 , (2.3)

where V - n is the normal velocity of the boundary. However, durina

gasification the temperature at the surface is just the gasification

temperature

f(u) = 0 , (2.4)

and the surface moves with the normal velocity

-X V n = F --_L f(u) (2.5)

where A is the increase in enthalpy per unit volime attained hy the soli

•inon its heinq converted to qas.
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There is no loss of generality in choosing u for the solid to be 0 at

the gasification temperature 0. Then for the gas u = X. We may thus extend

the function f(u), so far defined for u < 0, to the interval u e [0,X1 by

f(u) = 0, 0 < u < X . (2.6)

When the boundary conditions (2.4) and (2.5) apply, the problem looks very

much like a one-phase Stefan problem with sources, and it is known that a more

concise way of writing (2.1), (2.4), and (2.5) is in the form of a

"conservation" law []

ut = Af(u) + G(x,t) , (2.7)

where (2.7) now holds over all space and f has been extended by (2.6). For

our problem, o has the form

a(x,t) =,F F{u< 0 } .(2.8)

The form (2.7) can also be used as the basis for an efficient numerical

solution of N-dimensional problems which avoids the need for following the

moving boundary. (The matter of the explicit appearance of the boundary in

the source term can be treated by a method to be described in the sequel.)

There are, however, some important limitations to the applicability of

the formulation (2.7). The "one-phase" Stefan problem is really a two-phase

problem For which heat conduction takes place in only one phase. The non-

conducting phase (in this case, the "upper" one) acts passively as long as the

reqion it occupies is increasing with time, but when the region occupied by

the conducting phase increases anvwhere, the non-condtictinl nhase acts as a

reservoir of either positive or negative (in this case, nositive) energy. In

the one-phase 3tefan p-rohem under the influence of Ia , -.v free

bouniarv can move in either way. In the gasification problem, on the other

nin, f-hj rVA, once it biows away, has no further inftnnce on t oli4 ani

in narticiilar the free boundary can move only one way, since the ias cannot
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resolidify. Thus, although the formulation (2.7), in which the equation is

extended to the non-conducting phase, is quite natural for the one-phase

Stefan problem, in our problem the notion of a coexisting "gas phase" is a

fiction.

Nevertheless, the fact that at times the gasification problem can be put

in the form (2.7) and the numerical simplifications brought about by this

possibility serve as an inducement for us to find an appropriate version of

the problem in the spirit of (2.7). we have observed that the process of

gasification is irreversible, so that V - n ( 0. Thus, we can summarize the

boundary conditions (2.2)-(2.5) by noting that (2.5) holds in all cases, but

that on portions of the boundary, for certain times, we have

V - n < 0, f(u) = 0 , (2.9a)

whereas on the remaining portions of the boundary or for the remaining times,

V * n 0, f(u) < 0 • (2.9b)

Frnmr V - n < 0, we get

f(u) <F , (2.10)

which looks mathematically something like an "obstacle" condition on n" We

note that the conditions (2.9a) are of Dirichlet type for f and the

conditions (2.9b) are of Neumann type for f. Thus, generally we may expect a

switchinq back and forth between Neumann and Dirichlet boundary conditions,

and an alternate stopping and starting of the boundary motion.

Immediately we discern a lack of regularity for the solution of the

gasification problem as ooosed to the Stefan solution. ror, in the case of

the Latter, the temnerature F(ii) has bpen seen t- Ie cotirn)us '31. Put if

we extend f(u) to the region where there is no solid (and thus u X X) by

The convention f(u) - n there, we gee thit in the case of the Neumann

conlitions (2.1b), f(u) is qeneral]v l]iscontinnious. (in fact, this is true

-6-
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no matter what value we choose for f(X).) In addition, because the solid,

upon gasification, is replaced by a vacuum, which is a perfect thermal

insulator, the gasification problem possesses instabilities with respect to

the initial and boundary data which do not occur for the Stefan problem. For

example, by changing the initial enthalpy to X on a set of arbitrarily small

measure, we can partition the solid into a collection of non-interacting

regions, on the boundary of each of which the boundary conditions (2.9b)

obtain. Then, invoking the lack of co,.tinuity of f(u) under the influence

of these boundary conditions which was just observed, we may construct

solutions for which there is no uniform continuity of f(u) as the measure of

the set on which u has been set to X goes to 0, and for which thermal

contact between regions on different sides of the discontinuities of f has

been prohibited. In like manner, by shifting very slightly the positions of

the sources of external radiant energy and the directions in which they

radiate, one may gasify all the material along certain rays and thermally

insulate different parts of the solid from one another, thereby profoundly

affecting the solution. And by allowing the radiation to arrive in sharp

pulses rather than iiniformlv distrihuted over a small interval of time, one

may increase the gasification of the material at the surface while minimizing

the conduction of heat to the interior.

In our picture the gas has enthalpy u = X and is transparent to

radiation, and hence there is no mechanism whereby u can exceed A. For the

Stefan problem, one can qive meaninq to a value of u in (O,A): it is that

a volume fraction

u1 +

yNil) = ax',1,) = (2.11)

A k
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at a point has enthalpy X and is gas, while the remainder is solid with

enthalpy 0. Since values of u in (0,) arise quite naturally when one

solves the Stefan problem with sources, (2.7), we may expect a similar

situation to develoo when we try to cast the gasification problem in like

form. However, the values permitted the enthalpy at the solid boundary are

now not restricted to the set {X,0}, but may belong to the set {IX,u 01.

Accordinqly, if we denote the volume fraction at each point that corresponds

to enthalpy X by X, so that (1 - X) denotes the volume fraction of solid

with enthalpy u < 0, we get for the total enthalpy u of the combination,

u u(1 - ) + XX , (2.12a)

or

-=U X( u )  (2.12b)

A-u

HPre we have proceeded as if the solid material had a common enthalpy u when

< 1. We could envisage situations in which, in the region where

0 < X < 1, we had volume fractions a . of solid material with enthalpies1

u < 0, each set thermally insulated from the others. Then we would have

e i  1 - X, .u = (1 - X)u • (2.13)
1 i 1

However, if we consider the assignment of initial and boundary conditions and

the gasification process itself as phenomena which are essentially subject to

multi-dimensional stochastic spatial fluctuations, albeit minute ones, it

a.nnears that thp comnartmentalization of the solid MateriIl on a :icro-copic

lpvel intn such components thermally isolated from each other would occur with

-rolhaiI t-v 0, ,nd we qhaLl consideor the solil mat-rial tn havo i zinale-

-ioY'1 e'itha mv 'I and ;in,7le-valUed tPrnpratire f( )



From the foregoing considerations, we may derive equations for the time

evolution of X. If gasification is taking place we have = 0 and

u

= X(U), t ((X(u))t)+ = ( ) (2.14a)

But if gasification is not taking place, we have Neumann conditions at the

solid boundary, u 4 0, and

X > X(u), xt  0 . (2.14b)

If (x,0) = x(u(x,0)) Vx, we can use (2.14a,b) to find X(x,t) immediately

in terms of u:

x(x,t) sup x(U(X,t')) . (2.15)
0 4t' It

As regards the absorption of energy at the solid surface, as given b ,

(2.8), we treat the gas as if it were completely transparent to the

radiation. The absorption of radiation in a region where gas and solid are

interspersed on a microscopic level should then be proportional, at each

point, to 1 - X. Accordingly, if 0 denotes the location of the source of

radiation, and we assume the source to be isotropic, a relevant quantity at

any point P is the following integral:

0
d(P,O) f (1 - -X(Q))ds ,(2.16)

p

where the integral is taken over the straight line connectinq P to 0. We

consider the solid to be completely opaque to the ralation, anH I ieads to

the requirement that all the radiant enerqv be deposited at points P where

J(P,n) is as small as nossible, subject only to the constraint that

u(x9t) < N Vx,t '(2.17)



We have presented the physical considerations wi -i .v- 1,. .r

treatment of the gasification problem. In the next section we .-1i nr- irn

algorithm to solve a time-discretized version of the nroblem. V ii irx ',;

will be of a sort that has been introduced to solve problems of the tyne (2.7,

[1]. We should note, however, that although we may resort at times in the

sequel to pseudo-physical language to interpret the algorithm which we

develop, the algorithm to be presented will have been crafted to solve

precisely the problem whose physical and mathematical countenances have been

so far explained. The algorithm should not necessarily be construed as

describing also any physically realistic problems of a more general nature.

-10-



3. Time-Discretized Formulation

If the Lipschitz coefficient of f(u), as given in (2.1), is 1/a, a

suitable numerical scheme to solve (2.7) with a : 0 is, with T a time step

and u(nr) approximated by un fill

un+ 1 = usn - 8f(un) + S(I)(af(un)) , (3.1)

where

hA
S(h) E e (3.2)

is simply the linear semi-group generated by the operator A. In the problem

we treat here, we may regard S(h) as Green's function for the heat equation

in RN. It will be convenient below to write out S(h) in this fashion

explicitly:

(S(h)v)(x) = fN S(h;x,x')v(x')dx' . (3.3)
R

A pseudo-physical interpretation of (3.1) is that the equation

ut = 1 A(fS) (3.4)

is an equation giving the evolution of u in terms of a diffusion of ff(u),

n+1 nn
and that to find u we take u , subtract off Rf(u ), which is to be

diffused, and then add back S()(af(un)), the result of the diffusion.

If we are dealing with a problem for which (2.14a) applies Vx,t such

that 0 < X < 1, then in fact (3.1), supplemented by a term to represent the

effect of the external heat sources, will satisfactorily describe the time

evolution. However, in the more general case in which we may also have

X > X(u) and Neumann conditions at the boundary, this algorithm clearly will

not sinfFice.

In the first place, according to the pseudo-physic31 type of reasoning

introduced above, the trup rneasure of the "thermal energy" of the solid, per

unit vouirie of solid, shouli be 2f(u) and not ff(u), and the total amount

-11-
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of such thermal eneray, ner unit volume, is qf(u)(1 -X). Here, in accord

with (2.12a),

U = (3.5)
I - (35
1 -X

when X < 1. Accordingly, we would subtract out Bf(u)(1 - X), then add back

S(1)[af(u)(1 - X)]. However, in diffusing the thermal energy 8f(u)(1 - X),

we have transmitted energy to regions where a fraction X of the volume acts

as a perfect insulator. Hence this portion of the diffused thermal energy

should be subtracted out and returned to the point from whence it came. This

means subtracting out XS(-)[8f(u)(1 - X)) and then adding

S(;x',x)X(x')Rf(u(x))(1 - X(x))dx'. This final subtraction of a portionJN B
R

of the diffused thermal energy and return to its source is the part of the

algorithm designed to conform to the insulating properties of the vacuum and

to yield the solution of a Neumann problem at the appropriate places on the

boundary. It is a direct generalization of the method of "images" used to

solve Neumann problems at planar boundaries for the classical equations of

mathematical physics. Putting these arguments together, for the case when

Green's function is symmetric, as it is here,

S(h;x,x') = S(h;x',x) , (3.6)

we are led to construct the function

n n ,n)_n) + n

(3.7)
-nSI -- n -n -n)1n

- S(;)[ f(u )(1-xni + f(un)( 1 -xn )S(-n

If there were no external energy sources, we wo'l set ii 1 enual tr

~n1 •In that case, on apnroximatinq S(h) .y the first two torns nF its

Formal Taylor expansion,

-12-



S(h) 1 1 + hA , (3.8)

we would get from (3.7), as T + 0,

Ut = (I- )A((l-X)f(U)- (1-X)f(;)A(1-() (3.9)

In fact, (3.9) may be given a pseudo-physical interpretation by noting that it

can be derived, in the limit as the "mean free path" p + 0, from the

Boltzmann-like equation

Ut IN L f (X''tf(u(X'))(1- (X))(1-X(x' ))dxlt  if g{f
P R N

(3.10)

- f(U(x))(1-X(x)) f g( - )(1-(x,))dx'},
N

R

2
where f g(r)dr = 1, g > 0, and Ap = 0(1) as p + 0. Formally, (3.9) may

0
also be written

ut = V ((1 - )2 Vf(;)) • (3.11)

However, when f(5) and X are discontinuous, as may be the case at a sharp

solid-gas interface in the circumstance of Neumann conditions at the boundary,

the meaning of (3.11) in a distributional sense is not clear.

in the qeneral case we have to add the effect of the external energy

sources to d in order to get un + 1  Let us suppose that the incident

energy F in (2.8) has the form

F(x,t) = F(t) In - (x(O - x)l (3.12)

N-1 Ix(O) - X1N

where x(O) is the location of the source and I = 1, 8N the unit

hall in N limnsions.

-13-



The energy deposited between times nT and (n + 1)T may reasonably be

approximated by TO(x,nT) when a is continuous with respect to t. When

a has the form (2.8), this quantity has a singularity at the solid

boundary. However, during the time T that energy is deposited, it is also

being conducted into the interior in the manner described by equation (2.1).

Accordingly, if f6 is a local value of f'(u) in the solid and f > 0,

the energy will be spread out over a distance O((rin 1-/2) after the time
T

interval. It will be important for us to take this fact into account when

depositing the incident radiant energy. To spread the energy out over a

distance larger than O((Ttn -1)1/2 ) would be needlessly to increase the width
T

of the free boundary (that is, the distance over which X changes from "near

0" to "near 1") generated by the alqorithm. Experience with the Stefan

problem leads us to expect an approximate free boundary of width

O((T n 1)1/2), anyway [2]. Thus, we calculate u+1 from the equation
T

r F(nT) (1-in(x))
_llXO)_xl-1'

u n+ (x) = u-(x) + (3.13a)
0 < d n(x) < V-T

0 dn(x) > V

where, from (2.16j,

0
dn(x) f (1 - Xn(,) )ds .(3.13b)

-n nx

ie 1n + 1 ),as been founi, n1 is etermined in accordance with a

semi-discrete version of (2.15):

-n+1 -n (n+1+ = max(xn,( )) • (3.14)

iF we refer to (?.12a) an,1 (3.S), we find from (3.7) that

-14-



n -n

-n

and thus

x(e n ) < X, .(3.15)

Accordingly, if there are no external energy sources and un+1 = n, we get

-n+l -n
from (3.14) that X = X . This simply says that no material is gasified in

the absence of external sources.

We have only to check that the algorithm (3.7), (3.13), (3.14) guarantees

-nthat, if 0 < x < 1, then the following two conditions are satisfied:

(i) < X x < 1 and (ii) the time-discretized version of (2.17) holds, or

un + 1 < X. These two conditions are actually equivalent, by (2.11), (3.14),
-n

and the assumption 0 4 X < 1. By direct calculation from (2.12a), (3.7),

and (3.13), we get

un+l -n I + (1 - X )/ F(nT)S_+IX(O) - X1N-i (3.16)

(3.16) will imply that un+ l < X if we impose the following stability

condition on the size of the time step T:

F(n) - < Xu _1[dist(O,{xju(x,0) < X})] N -  (3.17)

The sufficiency of (3.17) follows from the observation that, if Xn(x) < 1,

then X O(x) < I and Ix(O) - x dist(O,{xlu(x,O) < A)). In the

calculations to be described in the next section, we impose the stability

condition (3.17) on T.

-15-



4. Numerical Quadrature and Computational Results

The computations we have actually performed have been one-dimensional

calculations for the case

X = 1, f(u) = min(u,0) . (4.1)

We see from (4.1) that we can choose = 1. The algorithm described in the

last section can now be written

un+1 n +IXi)[ST)(X n)f( u n)+f( u n)(S(T)-I)X n,

2OT( X 0< d' < -(4.2a)

n
0 d >T

-n-H -n n+1

x max( ,x )) • (4.2b)

Since the expression (3.5) for u becomes indeterminate when X + 1, we have

used the following determinaton of (1 - X)f(u) that is well-defined for all

values of x e [0,1]:

(1 - X)f(u) = min(u - X, 0 ) (4.3)

We have broken the spatial region into a finite number of cells Ii  of

width ix., 1 4 i < I. We have imposed the conditions X = 0, f(U) = -1 at1

the left and x = 1 at the right, and we have considered the source to be at

the right of the mesh. We denote the characteristic function of Ii  by Xi:

1 x e .

Xi(x) = 1 (4.4)
0 xel.,

we anproximate the functions un(x) and _n(x) by the piecewise-constant

functions

-16-



I

xn n Xi  (4.5a)
i=1

X - X Xi (4.5b)
i=1

and we denote the total energy in Ii by UI
n n

U = (Ax )u n (4.6)
i i i

For the operator S(T), we have used an explicit finite-difference

scheme. Then the operator can be represented by its effect oz a

characteristic function:

Ax -Ax +

S(T)Xi = Axii ci + ciXi + i+ .(4.7)
_ _ i - I i)i+ i

Suitable coefficients ci, c9, ci can easily be calculated, and we note only

the result of such a calculation [6, p. 291:

* TA i- I/' ("I-+dxi +A xi+I )I (4.8a)
+ -1

C. = 3T[Axi+ (Ax +Ax +AX )I (4.8b)
1/2 xi- i i+1

0 - +c. = 1 - ci - c . (4.8c)1 1

Here we have set
1

Axi+ 1 (Axi + Ax (4.9a)

and

Ax = Ax AX = AXI  (4.0h)

We recall that the operator S(T) is symmetric, as stated in (3.6).

However, the finite-difference analoq of S(T) given above is not necessarily

symmetric if the mesh widths Axi vary with i. This lack of symmetry could
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lead to a departure from strict energy conservation if one were to use the

algorithm (4.2) unthinkingly. Such a departure can be avoided if we return to

the argument given in the paragraph immediately preceding (3.6). What we

should do is use the finite-difference representation of S(T) given above

when S(T) operates on (1 - X )f(u ), and use the transpose of this

representation when S(T) onerates on * The transpose of the finite-

difference representation is given by
T+ 0 -

S T(T)Xi = ci+_Xi + + ci 1 i+ . (4.10)

The explicit nature of our representation of S(T) forces on us an

additional stability condition for T. A sufficient condition is that T

satisfy

1 )2
T ( - min((Ax. ) (4.11)

2 1

The finite-difference treatment of the energy deposition from outside

apportions to the cell Ii the amount of energy V, given by

n mnF(nT)T, - n -x F( nT)
I min 2 '(7 XI )AXTVT - (4.12a)

I
(mmnTVy l n F(nT)

i (i 2 T _i )Ax i T 2
(4.12h)

Denoting

n n -n
Y. min(u - Xi'0) (4.13j

and putting the expressionq above together, we find, For 2 i 1 T - 1,
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n+1 n -n yn - yn +Ui = U . + (1-Xi[) c x. ' Y .lC iAX I
1 1 i+l i+l i+1

(4.14)

,(, -n + n + " n
- Ax -xi)c 1  + 1-Xi_1c +

Special expressions are needed for i 1 and i = I. Since we are

imposing the conditions X = 0 and f(u) = -I at the left and X 1 at the

right, we set

-n= 0 = 1, Y = -1, n = 0 . (4.15)I +1

Thus we get for i = I
+1 n -nn - + n-n+-

U n+ n + (l1-)(Ync2Ax-c +Ax ) - ((_-n)c++c + Vn (4.16a)
1 1 12 222-01 1 12)11 1

where

+ 3
+ 31 (4.16b)o= xI(2Axl 4-Ax2)'

and for i = I
n1 n -nf yn c-yn -n - +Vn

U U + (1- )y cAX -Y AX (1-Xl-l)c + " (4.16c)

The computational loop is completed by settinq

n+ In+(
ui i /Ax (4.17a)

and

-n+1 n+1 -n
= max((u ) X (4.17b)

In the more general one-dimensional case, we get a finite-difference

relation of the sort

-19-
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n+1 n - -nU = U - (1-Xi)t(ui ) xi

-n -n
+ (1-xn ) (Axi f(Un )( 1 -Xi+l )

j+ 1 i+1c ~ il

+ -n -n* x i_I Ci_ 1 f(U i_ 1 )(-i I

+ Ax c f(u1Xi

-n -n +-n+ f(u i ) (1-.)Axi(ciXi+

0-n -- n Vn
+- cixi cixi 1 ) 4i (4.18)

where ct  and c- are as given in (4.Sa,b), and

c9 = - c- - ci + (4.19)

A sufficient condition for stability of the finite-difference scheme is

1 )2
T 4 - 8 min(Axi 2 (4.20)

-n n -n
u. is given in terms o 0 andx by means of (3.5). For computational

-n

reasons, for a sufficiently small e, one may wish to calculate u. from
1

n -nu i  - X k in
_ n - nX i > E:

1

u. = (4.21)

1

-n
0 1- Xi E

We performed a calculation with I = 120, Ax. = .01 Vi, T = .00005,
1

0 -1 0 0 
-- 0 0

ui?= -1, 1 i 100,u9= 1, 101 4 i 4 120, and i = x(u0). We chose

F(t) = 6 independent of t.

Letting the intersection of I100 and I101 be located at x = 0 anI

denoting by the "exact solution" the solution of the gasification nroblem

nosed on R with the solid region initially occupying R andI

u(x,0) = -1 Vx P R-, we find that initially the exact solution satisfies
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Neumann conditions at x = 0, and that u(0,t) is given by -1 + 6Vt/r,

until the time t0 = 1/36, when gasification commences and the front begins

to move. Further analysis of the exact solution indicates that for t > t

but t - to small, the position of the front is at

5 t 2
Z(t) = - 2 - t o)

If the solution of the gasification problem has a self-similar behavior as

t + o, it will be of the form

3 9
3 X+- (t-t)3U + -1 + e - + ' - Iu + 1 + 4 1 for x < - 3 (t - tI )

2

The problem was run to time t = .3. The following table gives the computed

position Z(t) of the free boundary, defined to be the point where X = .5

and determined by linearly interpolating values of X between adjacent cells

such that X - .5 changes sign from one to the other. In all cases the front

was never spread out over more than one or two computational cells.

TABLE 4.1

Computed Position Z(t) of Free Boundary

t Zt) t Z(t)

.09 0 .20 -.098

.10 -.005 .21 -.109

.11 -.010 .22 -. 119

.12 -.019 .23 -. 130

.13 -.028 .24 -.142

.14 -.037 .25 -.154

.15 -.046 .26 -.1cr

.16 -.055 .27 -. 177

.17 -.064 .28 -. 189

.18 -.076 .29 -.200

•1C -.087 .30 -.212
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In order to test that the algorithm described here does indeed predict

the cessation of gasification, cooling off of the solid surface, and

resumption of Neumann conditions at the boundary under the appropriate

n
circumstances, for nT > .3 we set U61 = 0. As expected, the motion of the

free boundary soon ceased, and the steady state value of the position was

computed as Z = -.216. The solution between i = 61 and the free boundary

reached a steady state u with the slope u. 3, as it should, from (2.2)

and (3.12).
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5. Remarks on Monotonicity

We would like to conclude this oaper with some suggestions regarding the

sorts of monotonicity properties we might expect for the solution. It is well

known, of course, that the solution of the Stefan problem depends

monotonically on the initial and boundary data, and also on the external

sources. In the case when x = X(u) Vx,t, then we also have such monotone

dependence. For, we are then dealing with the situation in which the

gasification front is moving and f(u) = 0 at the free boundary. In this

event, (3.11) is meaningful in a distributional sense and may be rewritten as

ut A (u) (5.1a)

for an appropriate function 6:

9'(u) = (1 - X(u)) 2f'(u) (5.1b)

But (5.1a) is in the same form as the Stefan problem, and the monotonicity

follows in the usual way.

In general, we can show that this type of monotonicity does not hold for

the gasification problem. Consider a problem with f(u) = min(u,0) and

X = 1, and with the boundary condition (f(u)) x = 0 imposed at x = 0.

Suppose the initial data are u(x,0) = -1 for 0 < x < 1, u(x,O) = 0 for

1 < x < 2, and u(x,0) = 1 for x > 2. If we do not irradiate the boundary

of the solid, at x = 2, with energy, the problem will evolve as a diffusion

process in 0 < x < 2 with homogeneous Neumann data at x = 2. Eventually

1
the steady state u(x) = - - for 0 < x < 2, u(x) = 1 for x > 2 will be

2

achieved. On the other hand, suppose we irradiate the solid with -t) 1
2

for 0 < t < 6 and F(t) = 0 for t > 6. As we let 6 + 0, we find that

any diffusion of thermal energy in the region occupied by the solid in the

time interval 0 < t < 5 hecomes negligible. Then, in the limit as 6 + 0,

we have for u(x,6) the following values: u(x,6) = -1 for 0 < x < 1,
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u(x,6) = 1 for x > 1. This is also the steady state achieved for the

problem. Thus, by irradiating the solid surface with energy, we have actually

reduced the steady state values of u in portions of the interior.

A tempting conjecture to make is that, if we have two solutions

un(x), Xn(x) and un(x), x2(x) of the gasification algorithm, subjected to

the same boundary conditions and external energy source located at a point
nn

with x-coordinate equal to X, then if u (x ,y) > u2(x,y)x,y and
12

1(x,y) -n(x,y)Vx,y, it will follow, for any p ) 0, that

f u p(x,y)dxdy uf f u2  (x,y)dxdy
N-1 X-C N-1 X-C

R R

and

f -n+p(xy)dxdy > f f n+pxy)dxdy

N-I X-C RN-i X-C

for all C e R+. Here y merely labels the N - i coordinates of a point in

a hyperplane orthogonal to the x-axis. If the conjecture is true, we will get

monotonicity properties for Radon transforms of the energy distributions.

However, at this point we do not have any solid indications regarding the

accuracy of the conjecture.
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